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What is the Perfect Fuel?
• Liquid at ambient conditions
• Immiscible in water
• Low toxicity
• High energy density
• Cold weather operability
• Stable during long-term storage
• Efficient production from a primary energy 

source
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Drop-In Fuels

• Fully compatible with existing fuel 
infrastructure
– Hydrocarbons (alkanes and aromatics)
– Possibly butanol

• Are drop-in fuels also the “perfect fuel?”
– Might be close enough
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Lipids vs. Lignocellulose

• Lipids
– Advantage: Upgrading to drop-in fuels relatively 

easy
– Disadvantage: Sourcing inexpensive lipid 

feedstocks
• Lignocellulose

– Advantages: Plentiful and relatively inexpensive
– Disadvantages: Difficulty of depolymerizing 

plant polymers and deoxygenating carbohydrate
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Challenge of Lignocellulose: 
Deconstructing Natural Composite

Whereas starch is a storage polysaccharide 
designed by nature as an energy reservoir, cellulose 

is a structural polysaccharide that in combination 
with lignin resists microbial degradation 6



Biochemical vs. Thermochemical 
for Processing Lignocellulose

• Biochemical
– Advantages: Selectivity and promise of biotechnology 

advances.
– Disadvantages: Difficulty of depolymerizing biomass 

and fermenting multiple monosaccharides.
• Thermochemical

– Advantages: Rapid biomass deconstruction; many 
processes are feedstock agnostic.

– Disadvantages: Catalyst deactivation; high hydrogen 
demand for deoxgenation. 
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Thermochemical Pathways
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Gasification vs Pyrolysis
• Gasification

– Advantages: Feedstock agnostic; uniform 
syngas product; commercially demonstrated.

– Disadvantages: Large scale of operation; high 
production cost.

• Pyrolysis
– Advantages: Liquid feedstock intermediate; 

distributed preprocessing; attractive economics.
– Disadvantages: Bio-oil unstable and corrosive; 

upgrading technology not fully developed.
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Bio-oil Upgrading has 
Attractive Costs

References :
1.  A. McAloon, F. Taylor, W. Yee, K. Ibsen, and R. Wooley (2000) Determining the Cost of Producing Ethanol from Corn 

Starch and Lignocellulosic Feedstocks, National Renewable Energy Laboratory Report, October.
2. Kazi, F. K., Fortman, J., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., Kothandaraman, G. (2010) Techno-economic 

comparison of process technologies for biochemical ethanol production from corn stover, Fuel 89, Supplement 1, S20-
S28.

3. Swanson, R., Platon, A., Satrio, J., Brown, R.C. (2010) Technoeconomic analysis of biomass-to-liquids production based 
on gasification, Fuel 89, Supplement 1, S11-S19.

4. Wright, M. M., Daugaard, D. E., Satrio, J. A., Brown, R. C. (2010) Techno-economic analysis of biomass fast pyrolysis to 
transportation fuels, Fuel 89, Supplement 1, S2-S10.

2000 tpd plant capacity Capital Production Feedstock 
gge=gallons gasoline equivlalent Cost Cost Cost
capital cost is based on annual capacity ($/gge) ($/gge)
Grain Ethanol1 0.94 1.74 $3.00/bu
Lignocellulosic Ethanol2 7.52 5.50 $75/ton
LT gasification Fischer-Tropsch liquids3 15.43 4.75 $75/ton
HT gasification Fischer-Tropsch liquids3 14.52 4.25 $75/ton
Motor fuels from bio-oil4 7.82 3.04 $75/ton
Motor fuels from bio-oil + merchant H2

4 3.30 2.09 $75/ton
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Fast Pyrolysis
Rapid thermal decomposition of organic 
compounds in the absence of oxygen to 

produce predominately liquid product

• Dry feedstock: <10%
• Small particles: <3 mm
• Moderate temperatures (400-500ºC)
• Short residence times: 0.5 - 2 s
• Rapid quenching at the end of the process
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Py Products

• Gas – non-condensable gases like carbon dioxide, carbon 
monoxide, hydrogen; yields of 13-25%.

• Solid – mixture of inorganic compounds (ash) and 
carbonaceous materials (charcoal); yields of 12-15%.

• Liquid – mixture of water 
and organic compounds 
known as bio-oil
recovered from pyrolysis 
vapors and aerosols 
(smoke); yields of 60-
70%.

BioBio--oiloil
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Bio-Oil

Biochar

Composition of Bio-Oil from 
Oak Wood  (wt %)

Saccharides 14.1

Aldehydes 16.3

Furans 1.4

Ketones 3.2

Carboxylic acids 4.7

Phenolic compounds 7.3

Other GC/MS Detected 2.2

Lignin oligomers 22.4

Water 28.4

Source:  ISU (2010)

• Advantages:
– Liquid product
– Easier to transport 

and store than raw 
biomass

– Upgrading resembles 
petroleum refining

– Attractive economics 
compared to other 
biomass conversion 
processes

• Disadvantages
– High oxygen and 

water content makes 
bio-oil inferior to 
petroleum

– Phase-separation, 
polymerization, and 
corrosiveness make 
storage difficult

– Appropriate catalysis 
for upgrading bio-oil 
molecules are still 
being identified
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Challenging Conventional 
Wisdom about Pyrolysis

• Working hypotheses on carbohydrate
− Pure holocellulose depolymerizes to 

thermally stable monomeric anhydrosugars;

− Alkali and alkali earth metals catalyze 
decomposition of holocellulose to 
undesirable “light oxygenates” in competition 
with depolymerization; 

− Alkali and alkali earth metals can be 
“passivated” through pretreatments.

• Working hypotheses on lignin
– Lignin readily depolymerizes to monomers that immediately begin to 

recondense in the gas phase to aerosols;
– Condensation can be controlled to produce predominantly lignin-

derived monomers instead of undesirable high molecular weight 
“pyrolytic lignin.”

Thermolytic Molasses
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Patwardhan et al., Bioresources Technology (2010) 4646-4655. 

Effects of Cations on Deconstruction 
of Cellulose
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Mechanism of Cellulose 
Decomposition Via Cations
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Coordination bonding of cations on cellulose  
induces homolytic fission of glucose rings

Ponder et. al., J Anal. App.Pyrolysis, 1991, Yang et al. Chem. Res. Chinese U. 2006 
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Passivating Alkali in Biomass
Pretreating switchgrass with most mineral acids (with the exception of nitric acid) 
significantly increases yields of anhydrosugars and decreases yields of light 
oxygenates. Organic acids and nitric acid had little affect on pyrolysis. Why?

Source: Brown et al (2010) Manuscript in preparation
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Passivating Alkali in Biomass
• Uncertainty about the forms of alkali in biomass:

− Inorganic salts: Potssium exists as highly mobile K+ ions accompanied by 
NO3- and Cl- anions (Marchner 1995, Mengel and Kirkby 2001, Barker and 
Pilbeam 2007) 

− Organic complexes: K+ is complexed to organic compounds such as 
proteins and nucleic acids by anionic functional groups: phosphate, sulfate, 
and COOH (Cameron et al 1998)

• Hypotheses:
‒ During pyrolysis organically (or nitrate) bound alkali 

is released and becomes catalytically active.  
‒ Acid infusions before pyrolysis convert this alkali to 

salts. Those that are stable against thermal 
decomposition reduce catalytic activity of alkali.

• Goal: Manage alkali in biomass:
− Reduce alkali accumulation in biomass
− Chemically complex the alkali before pyrolysis

Cameron et al 1998 19



Effect of char on 
deconstruction of cellulose

Secondary reactions of oxygenated vapors in presence of char particles:
CH2O C + H2O

Micropyrolysis of cellulose mixed with 
different levels of char
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Hot Vapor Filtering
• Problem: Hot gas filtration compromised 

by char-vapor reactions, which reduce 
bio-oil yields and quality

• Approach: Moving bed granular filter, 
which constantly refreshes filter media

– Char hold-up controlled by granular flow rate
– Filtration efficiencies exceed 99% for  

sufficiently high granular flow rates
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Micropyrolysis of Lignin
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Initial lignin pyrolysis products are phenolic monomers!

Monomers
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Pyrolysis of Lignin
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ISU’s Vision for Bio-Oil Upgrading

Water 
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Process Development Unit to Evaluate 
Recovery of Bio-Oil Stage Fractions
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Stage 
Fraction 

1

Stage 
Fraction 

2

Stage 
Fraction 

3

Stage 
Fraction 

4

Stage 
Fraction 

5
Fraction of bio-oil yield (wt%) 21 26.6 5.5 11 35.9
Moisture (wt%) 6.5 7.8 8.8 14.8 62.9

Modified acid number (mg KOH/g) 34.9 31.6 79.1 117.1 116.8

Levoglucosan (wt%) 10 6 1.5 1.0 0.5

Water Insoluble Content (wt%) 43.8 46.8 8.6 14.4 0.83

Oxygen Content (wt% m.f. basis) 28.6 29.1 41.1 39.6 53.7

Recover bio-oil as 
distinctive fractions 
that can be upgraded 
separately.

Sherwood-Pollard et al (2010) Manuscript in preparation

Rethinking Strategy for Bio-Oil Upgrading
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• Bio-Oil Heavy Ends
– Bioasphalt from lignin oligomers
– Sugars from carbohydrate 

depolymerization

• Bio-Oil Light Ends
– Renewable hydrogen from light 

oxygenates
– Acetic acid

• Biochar for carbon 
sequestration and soil 
amendment

Bioasphalt Paving Demonstration, 
Des Moines, IA, September 2010

Pyrolytic molasses—sugars 
extracted from bio-oil

Pyrolysis 
Peppers 
grown on 
biochar, 
Summer 
2010

Other Biobased Products from 
Fast Pyrolysis
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GHG Impacts of Soil Application 
of Biochar
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Conclusions

• Fast pyrolysis offers attractive costs for 
advanced biofuels

• Fundamental studies of fast pyrolysis can 
contribute toward improved strategies for fuel 
production

• Recovery of bio-oil as fractions with distinctive 
chemical compositions and physical properties 
may improve the prospects for bio-oil 
stabilization and upgrading
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